

City of New Castle, IN

2019 Inventory of Communitywide Greenhouse Gas Emissions

October 8, 2021

Produced by the New Castle Climate Action Team

With Assistance from ICLEI - Local Governments for Sustainability USA

Credits and Acknowledgements

New Castle Climate Action Team

Vickie Bertram, Art Association of Henry County

Diana Bowman, Earth Sciences Teacher / Environmental Club Sponsor - New Castle High School

Aaron Dicken, City of New Castle City Council

Beverly Matthews, Healthy Communities of Henry County

New Castle High School Environmental Club

Nan Polk, League of Women Voters

Jeff Ray, Healthy Communities of Henry County

Krystal Stanich, New Castle-Henry County Public Library

Dr. Helen Steussy, Henry County Removes Invasive Plant Species

Carolyn Vann, Solarize Indiana / Retired Professor - Ball State University

Community Partners

City of New Castle City Council

Brenda Grider, City of New Castle Clerk-Treasurer

City of New Castle Municipal Department Heads Water Treatment Plant, Wastewater Treatment Plant, Public Transit

New Castle-Henry County Economic Development Corporation

City of New Castle Board of Aviation Commissioners

NC-HC Public Library, Duke Energy, Henry County REMC, & Hayes Landfill

ICLEI-Local Governments for Sustainability USA

This report was prepared by Aaron Dicken, City Council Representative for Sustainability and Krystal Stanich, New Castle-Henry County Public Library from a template provided by ICLEI.

Table of Contents

Table of Contents	3
Tables and Figures	4
<u>List of Tables</u> <u>List of Figures</u> <u>Executive Summary</u> <u>Key Findings</u>	4 4 5 6
Introduction to Climate Change	7
<u>Greenhouse Gas Inventory as a Step Toward Carbon Neutrality</u> ICLEI Climate Mitigation Milestones	9 10
Inventory Methodology	11
Understanding a Greenhouse Gas Emissions Inventory Community Emissions Protocol Quantifying Greenhouse Gas Emissions Sources and Activities Base Year Quantification Methods	11 12 12 12 13 13
Community Emissions Inventory Results	15
Next Steps	16
Conclusion	18
Appendix: Methodology Details	19
Energy Transportation Wastewater Potable Water [if reported separately] Solid Wasto	19 20 20 21 21
<u>Solid Waste</u> <u>Fugitive Emissions</u>	21 21
Inventory Calculations	21

© 2020 ICLEI-Local Governments for Sustainability USA. All Rights Reserved.

Tables and Figures

List of Tables

Table 1: Global Warming Potential Values (IPCC, 2018)	11
Table 2: Communitywide Emissions Inventory	15
Table 3: Energy Data Sources	19
Table 4: Emissions Factors for Electricity Consumption	19
Table 5: Transportation Data Sources	20
Table 6: MPG and Emissions Factors by Vehicle Type	20

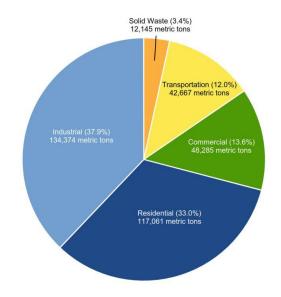
List of Figures

Figure 1: Communitywide Emissions by Sector	6
Figure 2: ICLEI Climate Mitigation Milestones	10
Figure 3: Relationship of Communitywide and Government Operations Inventories	11
Figure 4: Communitywide Emissions by Sector	16

Executive Summary

The City of New Castle recognizes that greenhouse gas (GHG) emissions from human activity are catalyzing profound climate change, the consequences of which pose substantial risks to the future health, wellbeing, and prosperity of our community.

With little appetite for green energy, we know that discussions and progress will be slow. But they must be moving forward. We desire, as community partners, to engage in action that is sensitive to our surroundings, especially residential zones, while also working toward solutions to sustain our environment in our hometown for generations to come.


Simple steps that are already in motion include electric vehicle charging stations. Feasible and attainable goals we would like to focus on include solar power for our municipal utilities, electric buses for public transit, further development of our bike-pedestrian plan, a better recycling plan, and tree planting. These projects, while seemingly minor, will be positive first steps.

This report provides estimates of greenhouse gas emissions resulting from activities in the City of New Castle as a whole in 2019.

Key Findings

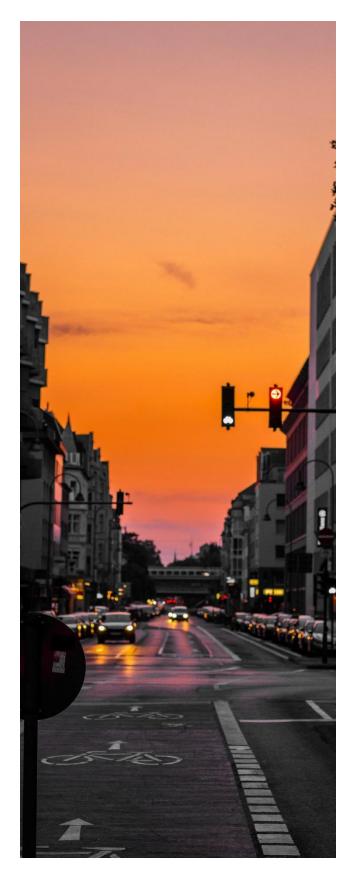
Figure 1 shows communitywide emissions by sector. The largest contributor is Industrial Energy with 37.9% of emissions. The next largest contributors are Residential Energy (33.0%) and Commercial Energy (13.6%). Actions to reduce emissions in all of these sectors will be a key part of a climate action plan. Transportation & Mobile Sources and Solid Waste were responsible for the remaining (less than 15.5%) of emissions.

The Inventory Results section of this report provides a detailed profile of emissions sources within the City of New Castle; information that is key to guiding local reduction efforts. These data will also provide a baseline against which the city will be able to compare future performance and demonstrate progress in reducing emissions.

Introduction to Climate Change

Naturally occurring gases dispersed in the atmosphere determine the Earth's climate by trapping solar radiation. This phenomenon is known as the greenhouse effect. Overwhelming evidence shows that human activities are increasing the concentration of greenhouse gases and changing the global climate. The most significant contributor is the burning of fossil fuels for transportation, electricity generation and other purposes, which introduces large amounts of carbon dioxide and other greenhouse gases into the atmosphere. Collectively, these gases intensify the natural greenhouse effect, causing global average surface and lower atmospheric temperatures to rise. Global climate change influences seasonal patterns and intensifies weather events, threatening the safety, quality of life, and prosperity of communities economic everywhere¹. Many regions are already experiencing the consequences of global climate change, and the City of New Castle is no exception.

Human activities are estimated to have caused approximately 1.0°C of global warming above pre-industrial levels, with a likely range of 0.8°C


to 1.2°C. Global warming is likely to reach 1.5°C between 2030 and 2052 if it continues to increase at the current rate. (high confidence) Warming from anthropogenic emissions from the pre-industrial period to the present will persist for centuries to millennia and will continue to cause further long-term changes in the climate system, such as sea level rise, with associated impacts (high confidence), but these emissions alone are unlikely to cause global warming of 1.5°C (medium confidence). Climate-related risks for natural and human systems are higher for global warming of 1.5°C than at present, but lower than at 2°C (high confidence). These risks depend on the magnitude and rate of warming, geographic location, levels of development and vulnerability, and the choices and on implementation of adaptation and mitigation options (high confidence).²

¹ International Panel on Climate Change. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. Retrieved from https://www.ipcc.ch/report/ar5/syr/

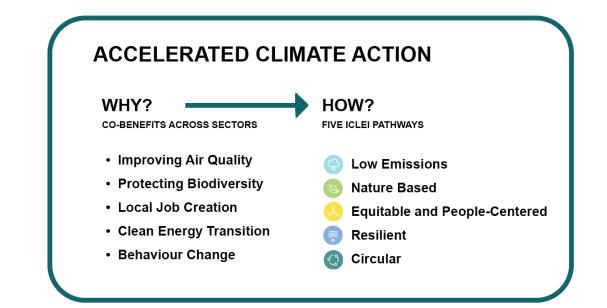
² IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp.

According to the <u>National Climate Assessment</u>, the Midwest is probably best known for agricultural production. Trends toward warmer, wetter, and more humid conditions provide challenges for field work, increase disease and pest pressure, and reduce yields to an extent that these challenges can be only partially overcome by technology³.

Many communities in the United States have started to take responsibility for addressing climate change at the local level. Reducing fossil fuel use in the community can have many benefits in addition to reducing greenhouse gas emissions. More efficient use of energy decreases utility and transportation costs for residents and businesses. Retrofitting homes and businesses to be more efficient creates local jobs. In addition, when residents save on energy costs, they are more likely to be spend at local businesses and add to the local economy. Reducing fossil fuel use improves air quality, and increasing opportunities for walking and bicycling improves residents' health.

³ U.S. Global Change Research Program. 2018. National Climate Assessment – Ch 21:Midwest. Retrieved from https://nca2018.globalchange.gov/chapter/21/

Greenhouse Gas Inventory as a Step Toward Carbon Neutrality


Facing the climate crisis requires the concerted efforts of local governments and their partners, those that are close to the communities directly dealing with the impacts of climate change.

Cities, towns and counties are well placed to define coherent and inclusive plans that address integrated climate action — climate change adaptation, resilience and mitigation. Existing targets and plans need to be reviewed to bring in the necessary level of ambition and outline how to achieve net-zero emissions by 2050 at the latest. Creating a roadmap for climate neutrality requires the City of New Castle to identify priority sectors for action, while considering climate justice, inclusiveness, local job creation and many other impacts that can also deliver on sustainable development.

To complete this inventory, the City of New Castle utilized tools and guidelines from ICLEI -Local Governments for Sustainability (ICLEI), which provides authoritative direction for greenhouse gas emissions accounting and defines climate neutrality as follows:

The targeted reduction of greenhouse gas (GHG) emissions and GHG avoidance across the community in all sectors to an absolute net-zero emission level at the latest by 2050. In parallel to this, it is critical to adapt to climate change and enhance climate resilience across all sectors, in all systems and processes.

To achieve ambitious emissions reduction, and move toward climate neutrality, the City of New Castle will need to set a clear goal and act rapidly following a holistic and integrated approach. Climate action is an opportunity for our community to experience a wide range of co-benefits, such as creating socio-economic opportunities, reducing poverty and inequality, and improving the health of people and nature.

ICLEI Climate Mitigation Milestones

In response to the climate emergency, many communities in the United States are taking responsibility for addressing emissions at the local level. Since many of the major sources of greenhouse gas emissions are directly or indirectly controlled through local policies, local governments have a strong role to play in reducing greenhouse gas emissions within their boundaries, as well as influencing regional emissions through partnerships and advocacy. Through proactive measures around land use patterns, transportation demand management, efficiency, green building, energy waste diversion, and more, local governments can dramatically reduce emissions their in communities. In addition, local governments are primarily responsible for the provision of emergency services and the mitigation of natural disaster impacts.

ICLEI provides a framework and methodology for local governments to identify and reduce greenhouse gas emissions, organized along Five Milestones, also shown in Figure 2:

- 1. Conduct an inventory and forecast of local greenhouse gas emissions;
- Establish a greenhouse gas emissions Science Based Target⁴;

- Develop a climate action plan for achieving the emissions reduction target;
- Implement the climate action plan; and,
- 5. Monitor and report on progress.

This report represents the completion of ICLEI's Climate Mitigation Milestone One, and provides a foundation for future work to reduce greenhouse gas emissions in the City of New Castle.

Figure ICLEI Climate Mitigation Milestones Figure 2: ICLEI Climate Mitigation Milestones

⁴ Science-Based Targets are calculated climate goals, in line with the latest climate science, that represent your community's fair share of the ambition necessary to meet the Paris Agreement commitment of keeping warming below 1.5°C. To achieve this goal, the Intergovernmental Panel on Climate Change (IPCC) states that we must reduce global emissions by 50% by 2030 and achieve climate neutrality by 2050. Equitably reducing global emissions by 50% requires that high-emitting, wealthy nations reduce their emissions by more than 50%.

Inventory Methodology

Understanding a Greenhouse Gas Emissions Inventory

The first step toward achieving tangible greenhouse gas emission reductions requires identifying baseline emissions levels and sources and activities generating emissions in the community. This report presents emissions from the City of New Castle community as a whole. A government operations inventory is mostly a subset of the community inventory, as shown in Figure 3. For example, most often, data on commercial energy use by the community includes energy consumed by municipal buildings, and community vehicle-miles-traveled estimates include miles driven by municipal fleet vehicles.

As local governments have continued to join the climate protection movement, the need for a standardized approach to quantify GHG emissions has proven essential. This inventory uses the approach and methods provided by the U.S. Community Protocol for Accounting and Reporting Greenhouse Gas Emissions (Community Protocol), which is described below.

Three greenhouse gases are included in this inventory: carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O). Many of the charts in this report represent emissions in "carbon dioxide equivalent" (CO_2e) values, calculated using the Global Warming Potentials (GWP) for methane and nitrous oxide from the IPCC 5th Assessment Report:

Figure 3: Relationship of Communitywide and Government Operations Inventories

Table 1: Global Warming Potential Values (IPCC,2014)

Greenhouse Gas	Global Warming Potential
Carbon Dioxide (CO ₂)	1
Methane (CH ₄)	28
Nitrous Oxide (N ₂ O)	265

Community Emissions Protocol

Version 1.2 of the U.S. Community Protocol for Accounting and Reporting GHG Emissions⁵ was released by ICLEI in 2019, and represents a national standard in guidance to help U.S. local governments develop effective community GHG emissions inventories. It establishes reporting requirements for all community GHG emissions inventories, provides detailed accounting guidance for quantifying GHG emissions associated with a range of emission sources and community activities, and provides a number of optional reporting frameworks to help local governments customize their community GHG emissions inventory reports based on their local goals and capacities.

The community inventory in this report includes emissions from the five Basic Emissions Generating Activities required by the Community Protocol. These activities are:

- Use of electricity by the community
- Use of fuel in residential and commercial stationary combustion equipment
- On-road passenger and freight motor vehicle travel
- Use of energy in potable water and wastewater treatment and distribution
- Generation of solid waste by the community

The community inventory also includes the following activities:

• Wastewater processing

Quantifying Greenhouse Gas Emissions

Sources and Activities

Communities contribute to greenhouse gas emissions in many ways. Two central categorizations of emissions are used in the community inventory: 1) GHG emissions that are produced by "sources" located within the community boundary, and 2) GHG emissions produced as a consequence of community "activities".

Source

Any physical process inside the jurisdictional boundary that releases GHG emissions into the atmosphere

Activity

The use of energy, materials, and/or services by members of the community that result in the creation of GHG emissions.

By reporting on both GHG emissions sources and activities, local governments can develop and promote a deeper understanding of GHG emissions associated with their communities. A purely source-based emissions inventory could be summed to estimate total emissions released within the community's jurisdictional boundary. In contrast, a purely activity-based emissions

⁵ ICLEI. 2012. US Community Protocol for Accounting and Reporting Greenhouse Gas Emissions. Retrieved from

http://www.icleiusa.org/tools/ghg-protocol/commun ity-protocol

inventory could provide perspective on the efficiency of the community, even when the associated emissions occur outside the jurisdictional boundary. The division of emissions into sources and activities replaces the scopes framework that is used in government operations inventories, but that does not have a clear definition for application to community inventories.

Base Year

The inventory process requires the selection of a base year with which to compare current emissions. The City of New Castle's community greenhouse gas emissions inventory utilizes 2019 as its baseline year, because it is the most recent year for which the necessary data are available.

Quantification Methods

Greenhouse gas emissions can be quantified in two ways:

- Measurement-based methodologies refer to the direct measurement of greenhouse gas emissions (from a monitoring system) emitted from a flue of a power plant, wastewater treatment plant, landfill, or industrial facility.
- Calculation-based methodologies calculate emissions using activity data and emission factors. To calculate emissions accordingly, the basic equation below is used:

Activity Data x Emission Factor = Emissions

Most emissionssources in this inventory arequantifiedusingcalculation-basedmethodologies.Activitydatareferto the

relevant measurement of energy use or other greenhouse gas-generating processes such as fuel consumption by fuel type, metered annual electricity consumption, and annual vehicle miles traveled. Please see appendices for a detailed listing of the activity data used in composing this inventory.

Known emission factors are used to convert energy usage or other activity data into associated quantities of emissions. Emissions factors are usually expressed in terms of emissions per unit of activity data (e.g. lbs CO₂/kWh of electricity). For this inventory, calculations were made using ICLEI's ClearPath tool.

Community Emissions Inventory Results

The total communitywide emissions for the 2019 inventory are shown in Table 2 and Figure 4.

Table 2: Communitywide Emissions Inventory

Sector	Fuel or source	[Baseline Year] Usage	Usage unit	2019 Emissions (MTCO ₂ e)
Residential energy	Electricity (Duke Energy)	2019	metric tons	82,403
	Electricity (Henry County REMC)	2019	metric tons	6,719
	Natural Gas	2019	metric tons	6,752
	LPG Consumption	2019	metric tons	21,187
		Resid	lential energy total	117,061
Commercial energy	Electricity (Duke Energy)	2019	metric tons	28,088
	Electricity (Henry County REMC)	2019	metric tons	7,105
	Natural gas	2019	metric tons	13,092
	•	Comn	nercial energy total	48,285
Industrial energy	Electricity (Duke Energy)	2019	metric tons	71,245
	Natural gas	2019	metric tons	63,129
		Ind	ustrial energy total	134,374
On-road	Gasoline (passenger vehicles)	2019	metric tons	19,597
transportation	Diesel (passenger vehicles)	2019	metric tons	1,560
	Diesel (freight trucks)	2019	metric tons	3,314
Transit	Gasoline	2019	metric tons	97
Aviation	Jet A (Jet Kerosene)	2019	metric tons	181
	Aviation Gasoline	2019	metric tons	66
Off-Road	Diesel	2019	metric tons	15,817
	Gasoline	2019	metric tons	1,956
Rail	Data Unavailable	2019	N/A	Data Unavailable
		Т	ransportation total	42,588
Solid Waste	Waste Generated	2019	metric tons	12,145
	• •	-	Solid waste total	12,145
	ТТ	otal communit	y-wide emissions	354,453

Figure 4 shows the distribution of communitywide emissions by sector. Industrial Energy is the largest contributor, followed by Residential Energy & Commercial Energy.

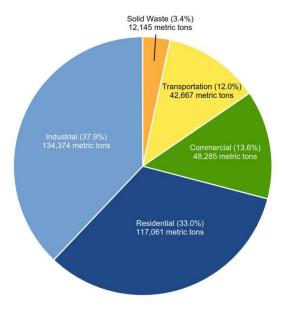


Figure 4: Communitywide Emissions by Sector

Next Steps

The inventory results should be used to focus and prioritize actions to reduce emissions. Based on the inventory results, the following areas have the greatest potential for emissions reduction:

- Municipal Energy (within Commercial Energy)
- Solid Waste
- Transportation & Mobile Sources

Completion of another GHG inventory in two to five years is recommended in order to assess progress resulting from any actions implemented. The detailed methodology section of this report, as well as notes and attached data files in the ClearPath tool provided to the City of New Castle, will be helpful to complete a future inventory consistent with this one.

Conclusion

This inventory marks the completion of Milestone One of the Five ICLEI Climate Mitigation Milestones. The next steps are to forecast emissions, set an emissions-reduction target, and build upon the existing [Name of Existing Plan or Sustainability Program in the Community] with a more robust climate action plan that identifies specific quantified strategies that can cumulatively meet that target.

The Intergovernmental Panel on Climate Change (IPCC) states that to meet the Paris Agreement commitment of keeping warming below 1.5°C we must reduce global emissions by 50% by 2030 and reach climate neutrality by 2050. Equitably reducing global emissions by 50% requires that high-emitting, wealthy nations reduce their emissions by more than 50%. More than ever, it is imperative that countries, regions, and local governments set targets that are ambitious enough to slash carbon emissions between now and mid-century.

Science-Based Targets are calculated climate goals, in line with the latest climate science, that represent a community's fair share of the global ambition necessary to meet the Paris Agreement commitment. To achieve a science-based target, community education, involvement, and partnerships will be instrumental. "While we have set a target of 50% for 2030, we recognize that the science is telling us we need ambitious targets that incorporate а fair share consideration of our historic contributions to global GHGs. This understanding means we should identify strategies that get us well beyond 50% reduction by 2030, more likely a 60% reduction."

In addition, the City of New Castle will continue to track key energy use and emissions indicators on an on-going basis. It is recommended that communities update their inventories on a basis, especially regular as plans are implemented to ensure measurement and verification of impacts. Regular inventories also allow for "rolling averages" to provide insight into sustained changes and can help reduce the chance of an anomalous year being incorrectly interpreted. This inventory shows that residential energy, industrial energy, and commercial energy, as well as communitywide transportation patterns will be particularly important to focus on. Through these efforts and others, the City of New Castle can achieve

environmental, economic, and social benefits beyond reducing emissions.

Appendix: Methodology Details

Energy

The following table shows each activity related to energy consumption, data source, and notes on data gaps.

Table 3: Energy Data Sources

Activity	Data Source	Data Gaps/Assumptions
Communitywide		
Residential, commercial, and industrial	Duke Energy &	
electricity consumption	Henry County REMC	
Residential, commercial, and industrial	U.S. Energy Information	
natural gas consumption	Administration	

If you have multiple emissions factors to represent multiple utilities, add another row and change column Title from "Year" to "Emissions Factor." Then delete this Line.

Table 4: Emissions Factors for Electricity Consumption

Emissions Factor	CO ₂ (lbs./MWh)	CH₄ (lbs./GWh)	N ₂ O (lbs./GWh)
RFC West eGrid	1067.679	99	14
Duke Energy	1863	210	30
Henry County REMC	2049	99	14

Transportation

Table 5: Transportation Data Sources

Activity	Data Source	Data Gaps/Assumptions
Communitywide		
Vehicle miles travelled	INDOT	Miles multiplied by 340 travel days

For vehicle transportation, it is necessary to apply average miles per gallon and emissions factors for CH_4 and N_2O to each vehicle type. The factors used are shown in Table 6.

Fuel	Vehicle type	MPG	CH₄ g/mile	N ₂ O g/mile
Gasoline	Passenger car	24.37713	0.0183	0.0083
Gasoline	Light truck	17.86788	0.0193	0.0148
Gasoline	Heavy truck	5.371652	0.0785	0.0633
Gasoline	Motorcycle	24.37713	0.0183	0.0083
Diesel	Passenger car	24.37713	0.0005	0.001
Diesel	Light truck	17.86788	0.001	0.0015
Diesel	Heavy truck	6.392468	0.0051	0.0048

Table 6: MPG and Emissions Factors by Vehicle Type

Wastewater

Activity	Data Source	Data Gaps/Assumptions
Communitywide Operations		
Energy used in wastewater facilities	Municipal Wastewater	
	Treatment Plant	

Potable Water

Activity	Data Source	Data Gaps/Assumptions
Communitywide		
Energy Usage	Municipal Water	
Gallons of Water Treated	Municipal Water Treatment Plant	

Solid Waste

Activity	Data Source	Data Gaps/Assumptions
Communitywide		
Tons of Trash Generated	Hayes Landfill	

Inventory Calculations

The 2019 inventory was calculated following the US Community Protocol and ICLEI's ClearPath software. As discussed in Inventory Methodology, the IPCC 5th Assessment was used for global warming potential (GWP) values to convert methane and nitrous oxide to CO_2 equivalent units. ClearPath's inventory calculators allow for input of the sector activity (i.e. kWh or VMT) and emission factor to calculate the final CO_2 e emissions.

This document is licensed by ICLEI under an International Creative Commons license CC BY-NC-ND 4.0. Users may share this product without prior authorization provided that (1) attribution of authorship is provided to ICLEI - Local Governments for Sustainability USA, (2) that the user does not significantly alter the content of the product, and (3) that the user does not use it for commercial purposes.